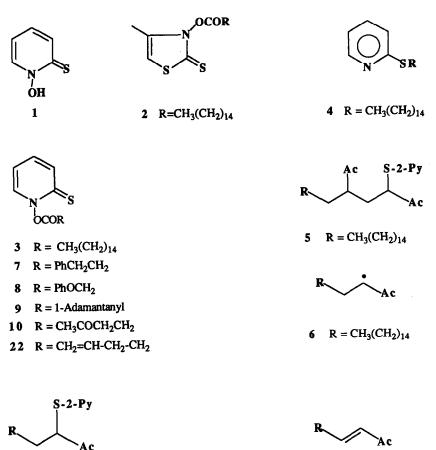
FURTHER STUDIES ON CARBON-CARBON BOND FORMATION BASED ON THE RADICAL REACTIONS OF ACYL DERIVATIVES OF N-HYDROXY-2-THIOPYRIDONE

Derek H.R. Barton* and Jadab C. Sarma

Department of Chemistry, Texas A&M University, College Station, Texas 77843, U.S.A.

Abstract - By careful exclusion of oxygen, carbon radicals, generated from the W lamp photolysis of O-acyl derivatives of N-hydroxy-2-thiopyridone, can be added efficiently to methylvinyl ketone. Extension to the radical from pent-4-enoic acid provides another synthesis of cyclopentane derivatives. Analogous additions with other electrophilic olefins are also reported.


The acyl derivatives of thiohydroxamic acids are an excellent source of carbon radicals.^{1,2} In earlier studies¹ we generated the radicals by heating the precursors under reflux in benzene or in toluene. Later we realised³ that the room temperature photolysis (W light) of the acyl derivatives of the inexpensive *N*-hydroxy-2-thiopyridone 1 is a milder procedure and gives higher yields. This methodology was used in all the peptide chemistry carried out in collaboration with Prof. Potier.⁴ Others have also developed the same technique.^{5,6,7}

In our original studies⁸ on carbon-carbon bond formation we used both photochemical and thermal activation. Amongst the olefinic radical acceptors methylvinyl ketone afforded only 40% of adduct, based on the acyl derivative 2. Recently we had occasion to look again at addition to methylvinyl ketone. Using the acyl derivative 3 as a standard radical source, we varied systematically the ratio of 3 to methylvinyl ketone. Besides small amounts of the rearrangement product 4, the dimer 5 was the principal by-product.

The optimum methylvinyl ketone concentration was close to 5 mmol for 1 mmol of 3. The yields were much better than those we obtained before. This is due to complete displacement of all oxygen by argon. The previous experiments⁸ were done under nitrogen. We did not appreciate how sensitive radicals of type 6 are towards traces of oxygen.

Further results are shown in Table 1. In each case the adduct from methylvinyl ketone was obtained in a satisfactory yield. Entries 3 and 5 deal with the phenoxymethyl and β -acetylethyl radicals respectively. The latter is, of course, from the readily available levulinic acid. We had not used either of these radicals before.

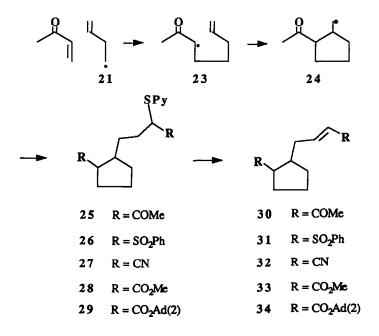
Oxidation of adducts 11 through 15 with *m*-chloroperbenoic acid afforded in the usual way¹ the corresponding sulfoxides, which on refluxing in benzene gave the corresponding unsaturated ketones 16 through 20 in good yield. As usual¹ all the olefins were of *trans*-configuration. Ketone 17^9 and ketone 20^{10} are known already.

- 11 R = $CH_3(CH_2)_{14}$
- $12 R = PhCH_2CH_2$
- 13 $R = PhOCH_2$
- 14 R = 1-Adamantanyl
- 15 $R = CH_3COCH_2CH_2$

R = CH₃(CH₂)₁₄
R = PhCH₂CH₂
R = PhOCH₂
R = 1-Adamantanyl
R = CH₃COCH₂CH₂CH₂

Entry	Acyl Derivativeb	Adduct (%) ^c	Unsaturated ketone (%)
1	3	11 (79)	16 (85)
2	7	12 (75)	17 (79)
3	8	13 (81)	18 (78)
4	9	14 (77)	19 (69)
5	10	15 (68)	20 (70)

Table 1^a


a) Typical Experiment. To 3 (2 mmol) in dry CH_2Cl_2 (10 ml) under argon was added methylvinyl ketone (10 mmol). The solution was irradiated with a 150 watt (W) lamp at 0-5°, monitoring the reaction by T.L.C. In all additions 5 equiv. of methyvinyl ketone were used.

b) Acyl derivatives were prepared from the appropriate acid chloride (3, 7, 8, 9) or from the acid (10) by the D.C.C. method.¹

c) All compounds gave satisfactory N.M.R., I.R., M.S. and high resolution M.S. spectra.

This work shows that methylvinyl ketone is a good trap for carbon radicals. It could provide a radical alternative to the Mannich-Robinson procedure.

We also examined methylvinyl ketone as an acceptor for the γ -butenyl radical 21 derived from the pent-4-enoic acid derivative 22. According to precedent¹¹ addition of 21 will afford the electrophilic radical 23, which wil readily cyclise to nucleophilic radical 24. There is then a second addition and the final product is 25 (61%) as a mixture of isomers. We then studied other electrophilic olefins to afford compounds 26 through 29 in yields of 50, 60, 57 and 55% respectively.

As before, oxidation of 25 through 29 afforded the corresponding sulfoxides which on thermal elimination (benzene reflux) gave the olefins 30 through 34 in yields of 77, 80, 81, 88 and 74% respectively. Formulae 29 and 34 refer to derivatives of adamantan-2-ol.

Our work complements the well known method of Stork¹² using methyl trimethylsilylvinyl ketone.

Acknowledgements. We thank the N.I.H. and the Welch Foundation for their support of this work.

REFERENCES

- Barton, D.H.R.; Crich, D.; Motherwell, W.B. J. Chem. Soc. Chem. Commun. 1983, 939. Idem, Tetrahedron 1985, 41, 3901.
- Reviews: see Ramaiah, M. Ibid. 1987, 43, 3541. Curran, D.P. Synthesis 1988, 489 and 665. Crich, D. Chem. Rev. in press.
- Barton, D.H.R.; Bridon, D.; Zard, S.Z. Heterocycles 1987, 25, 449. See also Barton, D.H.R.; Ozbalik, N.; Schmitt, M. Tetrahedron Lett. 1989, 30, 3263.
- 4. Barton, D.H.R.; Hervé, Y.; Potier, P.; Thierry, J. J. Chem. Soc. Chem. Commun. 1984, 1298. Idem. Tettrahedron 1988, 44, 5479, and references there cited.
- Newcomb, M.; Park, S.V. J. Am. Chem. Soc. 1986, 108, 4132. Newcomb, M.; Kaplan, J. Tetrahedron Lett. 1987, 28, 1615. Ibid. 1988, 29, 3449. Newcomb, M.; Park, S.V.: Kaplan, J.; Marquardt, D.J. Tetrahedron Lett. 1985, 26, 5651. Newcomb, M.; Deeb, T.B. J. Am. Chem. Soc. 1987, 109, 3163.
- 6. Ingold, K.U.; Lusztyk, J.; Maillard, B.; Walton, J.C. Tetrahedron Lett. 1988, 29, 917.
- 7. Dauben, W.G.; Kowalczyk, B.A.; Bridon, D.P. Ibid. 1989, 30, 2461.
- Barton, D.H.R.; Crich, D.; Kretzschmar, G. Tetrahedron Lett. 1984, 25, 1055. Idem, J. Chem. Soc. Perkin Trans. I, 1986, 39.
- 9. Reich, H.J. J. Org. Chem. 1975, 40, 2570.
- 10. Vinogradov, M.G.; Kovalev, I.P.; Nikishin, G.I.; Chem. Abstr. 1988, 108, 130979K.
- Inter alia, Stork, G.; Mook, R. Jr. J. Am. Chem. Soc. 1983, 105, 3720. Stork, G.; Mook, R.; Biller, S.A; Rychovsky, S.D. Ibid. 1983, 105, 3720. Stork, G.; Sher, P.M. Ibid. 1983, 105, 6765. Stork, G.; Sher, P.M.; Chen, H.L. Ibid. 1986, 108, 6384. Cekovic, Z.; Saicic, R. Tetrahedron Lett. 1986, 27, 5893. Curran, D.P.; Chen, M.-H. J. Am. Chem.Soc. 1987, 109, 6558. Barton, D.H.R.; da Silva, E.; Zard, S.Z. J. Chem. Soc. Chem. Commun. 1988, 285. Curran, D.P.; van Elburg, P.A. Tetrahedron Lett. 1989, 30, 2501.
- 12. Stork, G.; Ganem, B. J. Am. Chem. Soc. 1974, 95, 6152. Stork, G.; Singh, J. Ibid. 1974, 96, 6181.

(Received in USA 28 November 1989)